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ABSTRACT
We describe a new system for searching video databases us-
ing free-hand sketched queries. Our query sketches depict
both object appearance and motion, and are annotated with
keywords that indicate the semantic category of each object.
We parse space-time volumes from video to form graph rep-
resentation, which we match to sketches under a Markov
Random Field (MRF) optimization. The MRF energy func-
tion is used to rank videos for relevance and contains unary,
pairwise and higher-order potentials that reflect the colour,
shape, motion and type of sketched objects. We evaluate
performance over a dataset of 500 sports footage clips.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing Meth-
ods; H.3.3 [Information Search and Retrieval]: Re-
trieval models; Search process

Keywords
Sketch based Video Retrieval (SBVR), Markov Random Field
(MRF), Storyboard Sketch, Semantic Labelling.

1. INTRODUCTION
Video repositories are typically searched by matching text

queries to keywords that have been manually assigned to
each clip. Although keywords are efficient semantic descrip-
tors of content (e.g. “horse”, “car”) they are inefficient at
describing the appearance or motion of those objects. Fur-
thermore the level of annotation — at the level of the clip,
rather than frames or even objects within frames — limits
the spatial and temporal resolution at which video may be
searched. Querying by Visual Example (QVE) offers a solu-
tion, yet many QVE systems require photorealistic queries
(e.g. images [1], or video [2]) that may not be available to
the user at query-time.
In this work we describe a novel system for searching video

clips using annotated free-hand sketches. Our query sketches
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depict the appearance and motion of objects, which are each
annotated to indicate their semantic category. Rather than
relying on keyword annotation at the level of the clip to
match the latter, we harness a semantic segmentation algo-
rithm to label video regions using a set of pre-determined
object categories (e.g. grass, person, horse). In this re-
spect, our system extends the “storyboard sketches” pro-
posed by Collomosse et al. [3] for Sketch Based Video Re-
trieval (SBVR). Storyboard sketches are free-hand sketches
drawn by the users depicting both the video content and
dynamics (using arrows). Our system not only incorporates
the annotation of objects in storyboard sketches with seman-
tic tags, but also improves upon [3] through faster matching
and the handling of non-linear object motion.

Our core contribution is a Markov Random Field (MRF)
based framework capable of evaluating the support for a
query sketch within a given video, and hence the likelihood
of the two matching. We over-segment the video into a set
of space-time sub-volumes, each of which forms a node in a
graph with connectivity determined using space-time adja-
cency of sub-volumes. A graph-cut operation [4] identifies
the sketched object under an MRF defined across the nodes
in this graph, as well as determining a likelihood score for
the purpose of inter-video comparison. The potentials on
the MRF incorporate both semantic similarity, and appear-
ance similarity as a function of colour, motion, and shape.
In considering shape and motion, information from spatially
‘higher order’ segmentations of the video are also consid-
ered. We also correct for global camera motion in the scene
present, caused by the camera tracking moving objects.

2. RELATED WORK
Sketch based QVE largely focuses on the image retrieval

problem. Early sketch based image retrieval (SBIR) sys-
tems accepted queries comprising blobs of coloured texture,
matched through region adjacency and topology [5, 6], shape
[7], or spectral descriptors such as wavelets [8]. More re-
cently, SBIR has been applied to large scale (>1 million
record) retrieval by matching line-art query sketches to edge
information within photographs [9, 10, 11, 12]. These sys-
tems have demonstrated the value of sketches as an effective
tool for shape and appearance based SBIR.

Sketch has also been applied to motion retrieval within
video using sketched object trajectories [13, 14]. However,
the combined use of appearance and motion cues in SBVR
has been sparsely researched. VideoQ [15] is one of the first
SBVR systems that consider spatio-temporal attributes. How-
ever, VideoQ requires users draw exact motion curve and



specify the object’s speed (in pixels/second). More recent
SBVR systems accept greater flexibility in the specifica-
tion of both appearance and motion, making them more
amenable to depictions of events recalled under the ambigu-
ities of human episodic memory [3].
Our work is aligned with the latter approach of Collo-

mosse et al., which also seeks a maximum likelihood labelling
of super-pixels to the objects depicted within a storyboard
sketch. Given the ambiguity inherent in users’ sketches, we
also find it attractive to treat the sketch as a probabilistic
model to be fitted to video under a constrained optimiza-
tion. Nevertheless, there are a number of key differences
between our contribution and this prior work [3].
First, we incorporate semantics within our optimization

framework rather than relying on appearance and motion
alone. This improves scalability over larger video datasets,
as the ambiguity inherent in user sketches can result in nu-
merous coincidental false positives (e.g. based on shape or
colour) as the dataset grows. The presence of both semantic
and appearance information in the sketch overcomes the in-
principle limitation of matching based on appearance alone.
Second, we formulate our optimization as an MRF which
may be solved orders of magnitude faster than Collomosse
et al.’s Linear Dynamic Systems (LDS) and to give a globally
rather than locally optimal video labelling. These efficiencies
are largely due to our video representation which employs
space-time volumes as atomic units for labelling, rather than
spatial (per-frame) super-pixels. Third, our representation
of object motion admits non-linear trajectories which are
unavailable to [3]. We further enhance the features matched
by our system by incorporating a state of the art descriptor
(GF-HOG) for sketch based shape matching [16].
Another trend of SBVR systems match query sketches

with spatio-temporal sub-volumes segmented from video.
Hu et. al. [17] track SIFT keypoints to form short trajecto-
ries which are clustered to form a set of space-time tokens. A
Viterbi-like process matches the space-time graph of tokens
to the colour and motion description of the query sketch.
The approach is extended in [18] using a more robust mo-
tion clustering algorithm, where semantic information is also
considered. However, as with early SBVR [15], retrieval per-
formance is strongly dependent on the accuracy of the video
segmentation.
In contrast to these approaches that pre-process video

into segments offline, our contribution is to segment video
at query-time using a Markov Random Field (MRF) opti-
mization that simultaneously ranks clips for relevance and
localises the sketched object. MRFs have been successfully
used to find a globally optimal segmentation of images [4, 19]
and videos [20, 21]. A restriction on their use is frequently
cited to be high computational complexity, since individ-
ual pixels are used as the nodes in the graph (lattice). In
this work we propose to represent each video by an irregu-
lar spatio-temporal graph, containing a few hundred nodes
each of which is a spatio-temporal fragment within the video
(analogous to a super-pixel within an image).
In MRFs commonly used for segmentation, an image or

video is encoded as an undirected graph — representing any-
thing from a regular lattice of pixels [4, 19, 21], to an irreg-
ular network of regions [20]. A Gibbs energy function is
defined, often containing a unary data term and a pairwise
term, the minimum of which is sought to divide (cut) the
graph, and so yield a segmentation. Recent research has

extend this function to include higher order constraints [22,
21] enforcing labelling consistency within a local neighbour-
hood. Our contribution is to apply this latter development
to the SBVR problem; specifically to label spatio-temporal
fragments to sketched objects. To the best of our knowledge,
a graph cut solver has not been used in this way for SBVR
— nor have the modalities of semantics, shape, motion and
colour been previously combined within an SBVR system.

3. SYSTEM OVERVIEW
Our system accepts keyword annotated storyboard sketches

[3] as queries to retrieve similar videos in a dataset. We for-
mulate the video retrieval problem as a pixel labelling and
matching problem which is solved by a graph cut optimiza-
tion to simultaneously estimate the likelihood of the match,
whilst also localising the sketch object in the video. Fig.2
shows two example sketch queries, their top returned results
and the estimated foreground area. Given a video dataset,
we pre-process each video in to a set of space-time subvol-
umes — analogous to the spatial concept of superpixels [23]
— via a process described in section 4. The sub-volumes
form nodes in an undirected graph with edges linking a pair
of nodes when the respective sub-voumes are adjacent in
space-time (section 5.1).

Upon accepting a query sketch, our retrieval system seg-
ments each video (i.e. label sub-volumes) into background
and foreground regions; the latter being the sketched ob-
ject of interest. The unary term in the graph cut measures
the agreement between foreground nodes with a model built
from the sketched query. Agreement is measured using a
weighted combination of similarity scores expressing motion,
colour, semantic and shape similarity. Similarly, a back-
ground model is also learnt offline from the video. Pairwise
terms are computed between nodes using a similar set of
appearance attributes. A graph cut solver generates an op-
timal labelling, with an associated normalised energy which
is returned to the system as a (dis-)similarity measure to
rank video clips with respect to the query.

3.1 Sketch Parsing and Description
The query sketch is a combination of strokes that coarsely

depict object shape and colour, with the addition of ‘motion
strokes’ that depict the movement of the object. Addition-
ally, keywords are assigned to objects from a pre-determined
set of categories, to specify its semantic class. Optionally,
user may also depict the background color and semantics
(e.g. green grass).

These attributes are extracted from the query using the
following features:

Color distribution. A color histogram is computed from
pixels within the sketch, indicating the frequency of occur-
rence for each of the 15 colours in the user’s palette. The
histogram encodes an area-weighted, non-spatial colour dis-
tribution of the desired object.

Shape. The GF-HOG framework of [9] is applied to com-
pute a shape descriptor from the sketch. GF-HOG applies
Laplacian constraints to smoothly extrapolate a dense field
of edge orientations from sketched strokes. Histogram of
Gradient (HOG) features are sampled along sketched strokes
at varying spatial scales. A standard hard-assignment Bag
of Visual Words (BoVW) pipeline converts these descriptors
into a frequency histogram of codewords. We use a code-



book size of 1000 in our experiments. To enable comparison
of this shape descriptor with videos at query-time, the com-
mon codebook generated during video ingest (section 4.3) is
used to generate the BoVW histogram.

Motion direction. Strokes indicating the motion direc-
tion are drawn in a different ink which is used to depict the
object. Simple arrow pictograms may be recognised in the
sketch using [24] and the shaft of the arrow isolated. The
shaft sampled at regular intervals to yield a sequence of vec-
tors of constant length, which represent the motion of the
according segment.

Semantics. Our interface provides keywords describing
eleven semantic classes from which users can pick to an-
notate their sketched object. This information is encoded
by a probability vector across those classess; each keyword
on the object is weighted equally (e.g. 2 keywords produces
a 50:50 distribution over two bins).

4. VIDEO PRE-PROCESSING
For each video within our dataset, we conduct the follow-

ing pre-processing steps. Later, the representation parsed
from the video in this pre-process is matched with the repre-
sentation parsed from the sketch (section 3.1) at query-time,
via the method outlined in section 5.
We begin by applying shot detection to temporally seg-

ment video into clips, each of which forms a candidate for
retrieval within our video dataset. SIFT keypoints are de-
tected on every frame of a clip, and correspondence robustly
established between adjacent frames to compute inter-frame
homographies which we take as approximating camera ego-
motion over time. We also compute the pixel-wise fore-
ground probability for each frame. A background mosaic
is constructed by warping and averaging temporally neigh-
bouring frames under their homographies. The difference
between the current frame and its temporally local back-
ground mosaic is used as the foreground probability map for
that frame.

4.1 Spatio-temporal video over-segmentation
Many vision applications have benefit from representing

an image as a collection of superpixels [22, 25, 20, 26]. Su-
perpixels are spatially coherent groups of pixels that are
similar in color and texture, so in turn tend to constitute
a semantic object, or part thereof. This assumption leads
to advantages of superpixel primitives over pixels, both in
terms of computational efficiency and improved local con-
sistency in segmentation problems. In order to increase the
chance that superpixels do not cross object boundaries, an
oversegmentation is often preferred.
We oversegment our videos into a set of spatio-temporal

sub-volumes, which we refer to as “supervoxels” by analogy
with super-pixels. We adopt the video segmentation algo-
rithm proposed in [23]. This algorithm can segment a video
into a hierarchy scale of spatio-temporal supervoxels; here
we use the volumes from the finest scale level. Fig.1 (mid-
dle) gives an example of an oversegmented video. Video
clips in our dataset are typically segmented into around 2k
supervoxels, ensuring compact graphs for the subsequent op-
timization process at query-time.

4.2 Motion segmentation

Figure 1: Left: video frame. Middle: over seg-
mented spatio-temporal supervoxel. Right: motion
segmentation resulted subvolume.

In addition to performing a supervoxel segmentation cued
colour and texture, we run a coarser grain segmentation of
the video sequence cued on motion. It is difficult to mean-
ingfully describe motion at the fine scale of a supervoxel.
Similarly, appearance attributes such as shape are better
described over larger spatial areas.

We apply the motion segmentation algorithm proposed in
[27], and implement their recommendation to post-process
the resulting sparse point labelling to obtain a dense motion
segmentation result. Example motion segmentation results
are shown in Fig.1 (right).

The resulting coarse-scale supervoxels identified by the
motion segmentation process are used later in the higher
order term of our energy function (section 5.2) as a soft
constraint to improve spatio-temporal labelling consistency.
Shape features for each fine-scale supervoxel (obtained via
4.1) are later computed within the scope of the coarse scale
supervoxel in which they predominantly reside. As we are
not matching these coarse scale sub-volumes to the query
sketch directly, we do not require each coarse supervoxel to
exactly represent a single object.

4.3 Supervoxel feature extraction
Our retrieval process aggregates the fine-scale supervoxels

obtained in section 4.1 to form objects represented by the
query sketch. We therefore extract a set of features from
each of these supervoxels, to encode similar cues to that
parsed from the query sketch in section 3.1.

Foreground probability. Each supervoxel is assigned a
probability of being in the foreground. This is obtained us-
ing the pixel-wise foreground score obtained using the mo-
saic background subtraction performed earlier. This score is
averaged across the entire supervoxel.

Color distribution. As in section 3.1, a colour histogram
is built to represent the color distribution of all the pixels
the supervoxel contains. As pixels may deviate from the 15
colour user palette, the histogram bins are contributed to in
proportion to the RGB distance between pixel colour and
palette colour.

Motion direction. The footprint of the supervoxel is com-
puted within each frame it spans, yielding a sequence of re-
gion masks from which we obtain a sequence of centroids.
We average the vectors between these centroids to produce
an indicative direction for each supervoxel. These vectors
are later aggregated across supervoxels and matched to the



sequence of motion vectors parsed from the sketched trajec-
tory.

Shape. We apply the algorithm of Hu et al. [9] to com-
pute a set of sparse GF-HOG descriptors across each video
frame. Descriptors are quantised into visual words using a
pre-computed codebook, obtained using k-means to cluster
GF-HOG descriptors within video frames sampled at ran-
dom across the dataset. In our experiments we constructed
this codebook by sampling 10k random frames, and compute
a codebook of size 1000. We aggregate descriptors within the
local neighbourhood of the supervoxel into a frequency his-
togram, which is subsequently normalised. The neighbour-
hood is defined by the coarse supervoxel (obtained via the
motion segmentation process of section 4.2) that predomi-
nantly contains the fine-scale supervoxel being processed.

Semantics. Pixelwise semantic labelling (also referred to as
semantic segmentation) of images has started to gain atten-
tion in recent years. We apply the Semantic Texton Forests
(STF)[28] classifier to label the pixels in each video frame as
being in one of a pre-trained set of categories. In our experi-
ments we train STF over eleven categories — corresponding
to object classes within our video dataset, e.g. horse, grass,
person, snow, et.al. In a one-off manual process, we hand-
label around 250 frames from exemplar video clips in the
dataset to serve as training data for STF. The pixel-wise la-
belling probabilities are accumulated within the supervoxel,
and normalised to yield a probability distribution over the
eleven semantic classes for each supervoxel.

5. GRAPH CUT BASED VIDEO RETRIEVAL
We propose a spatio-temporal graph representation of videos

and formulate the video retrieval problem as a supervoxel-
labelling and matching problem. Each supervoxel is as-
signed as either the user depicted foreground object (by
query sketch) or the background. This is solved by graph
cut as a global optimization problem. The normalised cost of
the energy function (section 5.2) is used as the dissimilarity
value of this video to the query sketch.
In the following, we explain in detail how we construct the

graph model, formulate and optimize the energy function as
well as how the retrieval system is built.

5.1 Spatio-temporal graph construction
For each video, we construct an undirected spatio-temporal

graph G = 〈V,A〉. The node set V contains the over-segmented
spatio-temporal supervoxels (as introduced in section 4.1).
Two terminal nodes indicating the foreground model (de-
picted by the user sketched query) and the background model
learned from individual video or depicted by query sketch.
The arc set A consists both the ‘neighborhood links’ (n-
links) and the ‘terminal links’ (t-links). Each node (super-
voxel) in the graph has two t-links connect this node to the
two terminal nodes; and n-links indicate the connection to
its adjacent supervoxels. Two supervoxels are considered
as connected is they share boundary either spatially (intra-
frame) or temporally (inter-frame). Note that the segmented
supervoxel could be of any shape and size both spatially and
temporally. This makes our generated graph irregular unlike
many pixel based models.
The arc between two nodes (n-link) indicates the simi-

larity between these two adjacent supervoxels, which is pre-
computed offline, based on their color, motion, semantic and

foreground probability similarity. Note that the shape fea-
ture is not considered when measuring the neighborhood
similarity. The arc that connect each node to the terminal
nodes (t-link) are defined as the cost of labelling the accord-
ing supervoxel to foreground and background. In our case
this is computed as their dissimilarity in the feature space
to each model.

Note a similar concept of spatio-temporal graph is also
used in [20] for video segmentation. The nodes in their
graph are superpixels segmented from each frame by 2D
image segmentation algorithm and the arcs are defined by
inter and intra frame colour similarity within a neighbor-
hood area. While in our work, the nodes in our graph are
spatio-temporal coherent supervoxels. Our unary and pair-
wise term are built on appearance, motion and semantic
features which brings more rich information to the graph
optimization.

5.2 Definition of Energy Potentials
Given the graph G, a finite set L = {l1, l2, . . . , lL} of la-

bels. LV represents all the possible labelling stragegies for
the node set. X ∈ LV is a map that assigns to each vertex
v a label xv in L. An energy function E maps any labelling
strategy X to a real number E(X) denoted as its energy.
Energy functions are defined as the cost of the according
labelling strategy. Therefore, finding the optimum labelling
strategy is equivalent to find the minimum cost of the energy
function.

Similarly to [21], our energy function consists of unary,
pairwise and higher order terms as:

E(X) =

α
∑
i∈V

ψu(xi) + β
∑

i∈V,j∈Ni

ψp(xi, xj) + γ
∑
i∈V

∑
c∈S

ψh(xi) (1)

where α, β, γ,∈ [0, 1], (α + β + γ = 1) are weights for the
unary term ψu, pairwise term ψp, and the higher-order term
ψh respectively. V corresponds to the set of all super-voxels
in the video, S represents the set of sub-volumes segmented
by motion segmentation, Ni indicates the neighbouring super-
voxel set of the current super-voxel i. This energy function
encourages the neighbouring consistency both spatially and
temporally. Moreover, the higher-order potential term in-
crease the label consistency inside the sub-volumes gener-
ated by motion segmentation. The detail of how each of the
potentials are defined is described in the following.

5.2.1 Appearance and motion model
The unary term ψu exploits the fact that different appear-

ance and motion homogeneous voxels tend to follow different
labelling models. In our case, its a binary labelling problem.
This term encourages each super-voxel been assigned to its
most similar model. We use the cost of a label being assigned
to super-voxel i as the unary potential, which is computed
as a weighted sum of the dissimilarity of colour, shape, mo-
tion, semantics to the model as well as the the probability to
be foreground or background. The unary term is computed
as:

ψu(xi) = θclψcl(xi) + θspψsp(xi)

+θmtψmt(xi) + θsmψsm(xi) + θfgψfg(xi) (2)

where θcl, θsp, θmt, θsm, θfg,∈ [0, 1], (θcl + θsp + θmt + θsm +
θfg) = 1, are weights of colour, ψcl(xi), shape ψsp(xi), mo-



tion ψmt(xi), semantics ψsm(xi), and foreground potentials
ψfg(xi) respectively.
We now first explain how we build models for the fore-

ground and background labels. In most graph cut based sys-
tems, labelling models are often pre-defined manually [21],
or online learned [29]. In this paper we build the foreground
model from the query sketch. The appearance, motion and
semantic features extracted from the query sketch is used as
the foreground object feature model. When the background
is also defined in the query sketch, the model of which could
be learnt similarly as we learn the foreground model. Oth-
erwise, we assume the 1% supervoxels that has the lowest
foreground probability as definite background. The back-
ground model is built as the area weighted average feature
vectors of supervoxels from the definite background area.
For the colour shape and semantic features the distance

between a node and the foreground/background node is com-
puted using the cityblock measure. In the case of the motion
the query motion stroke is quantised into same number of
equal segments as the number of frames of the matching
video. Nodes from the video are mapped onto the corre-
sponding segments from the quantised query motion stroke.
The angular distance is computed over each segment and
averaged as the node motion dissimilarity term. The fore-
ground probability of each supervoxel fi, (i ∈ V) is directly
used as the unary potential to be labelled as the background
model.

5.2.2 Spatio-temporal Coherence model
The pairwise term is often used to encourages spatial co-

herence in region labelling and discontinuities to occur at
high contrast locations. Given the graph defined in our pa-
per, each node is a spatio-temporal supervoxel. Appear-
ance feature alone is not enough to define the voxel coher-
ence. Therefore, we define the neighbouring coherence as
a weighted fusion of the similarity values based on colour,
motion and semantic features. Our pairwise term is defined
as:

ψp(xi, xj) =

{
0, if xi = xj

e−di,j , if xi 6= xj
(3)

where di,j is the weighted sum of distance between nodes i
and j using different features. Given the feature represen-
tations of each supervoxel, the distance between which is
computed similarly as we compute the distance to the fore-
ground/background models (unary term). Note, that shape
feature is not considered to measure the supervoxel similar-
ity in the pairwise term.

5.2.3 Motion segments Consistency Term
In recent works, a higher-order term is often defined in

the energy function to encourage the pixels belonging to a
super-pixel to be assigned with the same label.
Similarly to [22, 21], we define a soft constraint to reflect

the label consistency. However, different with their pixel-
wise graph model where over-segmented superpixel is used
in the higher order term to improve the labelling consistency,
our model takes the supervoxels as nodes and the motion
segmentation resulted sub volumes are used in the higher-
order term to encourage spatio-temporal labelling consis-
tency. We define this term as a weighted sum of unary po-
tentials of all the supervoxels within the current subvolume

to be labelled the same as the current node i:

ψh(xi) =

{
0, if i /∈ m

1∑
j∈m aj

∑
j∈m ajψj(xi), if i ∈ m, (4)

where m ∈ M is one sub-volume of the motion segmenta-
tion sub-volume set M, j ∈ m represents each of the super-
voxels that belongs to sub-volume m,

∑
j∈m ajψj(xi) is the

weighted cost if all supervoxels constituting m are labelled
as xi (the current labelling for node i), weight aj is the total
number of pixels within supervoxel j, ψj(xi) is thus defined
as the unary potential of supervoxels in m against label xi.
This function indicates that an optimal label assignment to
node i should also fit all supervoxels within the same motion
segmented subvolume. Since supervoxels within one motion
segmented subvolume are represented by the same subvol-
ume, it is not necessary to compute shape feature again in
this higher-oder term.

5.3 Optimization
Similarly to [21], our ‘higher order’ term can also be ef-

fectively merged to unary term. So that the energy function
Eq. 1 can be simplified to:

E(X) =∑
i∈V

(αψu(xi) + γ
∑
c∈S

ψh(xi)) + β
∑

i∈V,j∈Ni

ψp(xi, xj) (5)

The simplified energy function in Eq. 5 is of the form of
Potts model. It can be minimised using the α-expansion
and αβ-swap algorithm [4]. Each α -expansion iteration can
be solved by performing a single graph-cut using the min-
cut/max-flow [30]. We also use the same technique in [31]
to improve the optimization process.

5.4 Video retrieval
From Eq. 5, the energy of each optimization iteration de-

fines the cost of the according labelling strategy. The opti-
mized minimum energy indicates the cost of the best strat-
egy to spatio-temporally cut the video clip into the query
sketch depicted foreground object and the background. The
more similar the sketch query depicted foreground object
(and background if applicable) to the video, the smaller cost
could spend to match them, i.e. given one video clip and sev-
eral sketches each depicting a different object (and scene),
the smaller the final energy cost to match the video clip to
one of the sketches, the more similar the pair are. Therefore,
the final optimized energy could be used as a dissimilarity
between a video clip and a query sketch.

However, since the energy function defined in Eq. 5 is also
related with the number of nodes (the unary and higher or-
der term) and links (the pairwise term) within the graph, it
can not be directly used to rank the similarity of a collection
of videos to the query sketch. In our work we apply the nor-
malised energy function in our video retrieval system. We
normalise the energy as following:

E′(X) =

1

|N |
∑
i∈V

(αψu(xi) + γ
∑
c∈S

ψh(xi)) + β
∑
i∈V

(
1

|Ni|
∑
j∈Ni

ψp(xi, xj))

where |N | is the total number of supervoxels in a video clip,
|Ni| is the number of neighbours. and this normalised energy
E′ will be used as the dissimilarity score to rank videos in
our retrieval system.



Figure 2: Left: The query sketch. Middle: top
returned video frame. Right: The estimated fore-
ground area that matches with the query sketch.

In our proposed video retrieval system, the off-line pro-
cessing steps include: video pre-processing (section 4), com-
puting the pair-wise potential and the unary potential to the
background model built from the video itself. Upon accept-
ing a query sketch, we first build the foreground model using
the sketch and then match with the pre-computed features
of supervoxels (the unary potential to the foreground), the
higher order potential, and then the graph is optimized.

6. EXPERIMENTS
We evaluate our system over a sport footage composed

of 500 video clips, among which there are 304 horse rid-
ing and 196 snow boarding/ski video clips. Objects/scene
within these video clips contains: person, horse, grass, snow,
stands, tree, sky, water. Camera motion happens in most of
the clips. This dataset is comparable to the ‘TSF dataset’
used in [3] (which contains 298 clips); and the 200 similar
clips used to evaluate VideoQ [15].

6.1 Parameter settings
In video preprocessing step, we use the default parame-

ters for both the supervoxel and subvolume segmentation.
We use the same parameters as in [9] to extract the GF-
HOG feature, for each point along sketch/edge we compute
histogram distribution of eight orientations on a 3 × 3 grid
with three window size (5, 10, 15).
In the graph cut model, there are two sets of weightings.

One is the weights for the three energy terms, and the other
is the weights of different features. Both weights can be
freely adjusted by the users according to their preference.
In our experiments, we use the same weighting parameters
through all videos in our dataset. Weighting parameters for
each term in the energy function are set by experience, we
use α = 0.9, β = 0.05, γ = 0.05. In the unary term we set
θcl = 0.25, θsp = 0.05, θmt = 0.3, θsm = 0.3, θfg = 0.1.
Since shape feature is not considered in the pairwise and
higher-order term, we set the feature weights for these two
terms as: θcl = 0.3, θmt = 0.3, θsm = 0.3, θfg = 0.1.

6.2 Performance Evaluation
Our system takes into consideration spatio-temporal fea-

tures to match video clips to sketch queries. In order to
understand how each of these components works we first vi-
sualize some retrieval results of using color, motion, seman-
tic keywords alone in Fig.4. Each of these features alone

Figure 3: Average Precision-Recall curves of us-
ing motion stroke alone, semantic keywords alone
to retrieve video clips and our annotated storyboard
sketches that depicting the color, motion, shape and
semantics of objects (and background if sketched).

is typically used in appearance, motion or keywords based
video retrieval systems. This example shows that although
each component alone is able to find the related clips by
considering the particular feature, they are not sufficient to
define the spatio-temporal aspect of a video clip. In com-
parision, storyboard sketches is a convenient yet powerful
query mechanism for video retrieval to describe the spatio-
temporal feature of the object/scene. In Fig.5 we show two
typical query sketches used in our system, and the top 5 re-
turned results. From this graph we can see that our system
is able to return video clips that share spatio-temporal and
semantic similarity.

The average Precision-Recall (P-R) curves are shown in
Fig.3, this demonstrates 3 different PR curves the ‘motion
alone’,‘semantic alone’ and the ‘fused features’ results. For
the motion PR curve five different motion strokes depicting
unique directions of motions for the foreground objects are
evaluated. The semantic performance is evaluated using 2
different semantic queries: ‘horse’ depicting the foreground
object; and ‘man’ depicting the foreground together with
‘snow’ describe the background (the object class ‘man’ ap-
pears in all video clips, the background class ‘snow’ is used
to discriminant from horse riding clips). We manually create
groundtruth for each query by considering the related clips
based on motion or semantics alone separately. We do not
draw the precision recall curve of using shape and color fea-
ture alone, since without the support of motion, semantics
or foreground probability; these features could easily match
to background areas (Second row of Fig.4 – the red query
retrieved the background).

The P-R curve ‘fused features’ in Fig.3 considers all 4 fea-
tures combined as explained in section 5. In order to design
reasonable set of queries to evaluate the proposed system, we
use the groundtruth to select suitable candidates that have
a combined direction, semantic class and colour of greater
than 10 examples within the dataset. In total 7 free-hand
sketch queries are used to evaluate our system. The 7 queries
cover 4 motion directions, 7 colours and 2 semantic classes
to demonstrate the range of the dataset. On average each



Figure 4: Example query sketches and their exam-
ple results of using color, motion, semantics features
alone individually. The blue bounding box indicate
the area of interest that matched with the query
sketch described by the according feature.

query has 20 related video clips. A clip is considered relevant
with the query sketch when it shares approximate shape,
color, motion and semantics to the sketched foreground ob-
ject (and background if sketched).The P-R curve for ‘fused
features’ shows that our system achieves a comparable per-
formance with that of the VideoQ [15] and [3]. Note that
the performance of the curves in Fig. 3 are not comparable
to each other, since the groundtruth of each are created by
considering different aspects of the video.
Overall the dataset we obtain MAP=0.48 by consider-

ing all the features, the top 10 results have ∼=57% rele-
vance. This performance is comparable to the performance
achieved in VideoQ [15] and [3]. We also evaluate our system
without using the shape component. The system achieves
a MAP=0.45, and the top 10 results have ∼=53% rele-
vance. This shows that although using shape feature alone
is difficult to achieve satisfied retrieval result, our proposed
method to incorporate the shape feature is efficient yet ef-
fective to improve the retrieval performance.
At run time, once the user submit a query sketch to the

system, it takes on average around 53.42 seconds to rank the
500 video clips in the dataset. This improves the run time
computational complexity in [3], which takes 2 minutes to
ranks videos in a similar but smaller dataset.

7. CONCLUSION
We have presented a sketch based video retrieval (SBVR)

system driven by free-hand sketches depicting object appear-
ance and motion, and annotated with keywords to indicate
semantics. To the best of our knowledge we are the first
to combine shape, motion, colour and semantics within a
single SBVR framework. Furthermore we have introduced
the use of Markov Random Fields (MRFs), more commonly
used for video segmentation, as a novel form of SBVR so-
lution capable of both ranking clips for relevance, and lo-
calising sketched objects within retrieved clips. We have
demonstrated good accuracy over a challenging dataset of
500 sports footage clips.

Figure 5: Example query sketches and the top 5
returned results, ranked from top to bottom. The
red bounding box indicate the negative results, and
the blue bounding box indicate the positive results.

In adopting an MRF optimization over all videos, we fol-
low recent SBVR approaches [3] that tackle ambiguity in
sketch by phrasing the retrieval task as a model fitting prob-
lem. Here we extract a multi-modal representation of the ob-
ject to be retrieved, and solve for the resulting MRF to com-
pute the most likely supervoxel labelling given that model.
Whilst this solution offers unique advantages in seeking a
globally optimal labelling for a given sketch, it is open to
two potential criticisms.

First, the run-time expense of performing an MRF solve
for each video. We have addressed this by adopting a super-
voxel representation that contains a relatively low (around
2k) number of nodes, and we show that it can be solved
fairly efficiently. This is a significant reduction in complex-
ity over [3] where set of per-frames superpixel (not per-clip
supervoxels) are labelled at query time.

Second, the system might at first consideration be deemed
unsatisfactory due to perceived sensitivity to the weights
within our unary term that combine our various multi-modal
features. In fact we regard this as a strength; users will
frequently wish to express a preference between modalities.
Consider a user sketching a red car in the absence of such
a clip in the dataset. Would they prefer a set of results
containing red objects, or car shaped objects, or red ob-
jects moving in the direction sketched? The balance between
these modalities is user task specific, and in future an ideal



candidate interactive specification through a relevance feed-
back interface. We believe this is the most promising future
direction for our system.

8. REFERENCES
[1] Sivic, J., Zisserman, A.: Video Google: A text

retrieval approach to object matching in videos. In:
ICCV. Volume 2. (2003) 1470–1477

[2] Bertini, M., Del Bimbo, A., Nunziati, W.: Video clip
matching using mpeg-7 descriptors and edit distance.
In: CIVR. (2006) 133–142

[3] Collomosse, J., McNeill, G., Qian, Y.: Storyboard
sketches for content based video retrieval. In: ICCV.
(2009) 245–252

[4] Boykov, Y., Jolly, M.P.: Interactive graph cuts for
optimal boundary and region segmentation of objects
in n-d images. In: ICCV. (2001) 105–112

[5] Ashley, J., Flickner, M., Hafner, J.L., Lee, D.,
Niblack, W., Petkovic, D.: The query by image
content (qbic) system. In: SIGMOD. (1995) 475

[6] Smith, J.R., Chang, S.F.: Visualseek: A fully
automated content-based image query system. In:
ACM Multimedia. (1996) 87–98

[7] Sciascio, E.D., Mingolla, G., Mongiello, M.:
Content-based image retrieval over the web using
query by sketch and relevance feedback. In:
Proceedings of the Third International Conference on
Visual Information and Information Systems. VISUAL
(1999) 123–130

[8] Jacobs, C.E., Finkelstein, A., Salesin, D.: Fast
multiresolution image querying. In: SIGGRAPH.
(1995) 277–286

[9] Hu, R., Barnard, M., Collomosse, J.P.: Gradient field
descriptor for sketch based retrieval and localization.
In: ICIP. (2010) 1025–1028

[10] Hu, R., Wang, T., Collomosse, J.P.: A bag-of-regions
approach to sketch-based image retrieval. In: ICIP.
(2011) 3661–3664

[11] Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.:
Sketch-based image retrieval: Benchmark and
bag-of-features descriptors. IEEE Transactions on
Visualization and Computer Graphics 17 (2011)
1624–1636

[12] Cao, Y., Wang, C., Zhang, L., Zhang, L.: Edgel index
for large-scale sketch-based image search. In: CVPR.
(2011) 761–768

[13] Shim, C.B., Chang, J.W.: Efficient similar
trajectory-based retrieval for moving objects in video
databases. In: CIVR. (2003) 163–173

[14] Su, C.W., Liao, H.Y.M., Tyan, H.R., Lin, C.W., Chen,
D.Y., Fan, K.C.: Motion flow-based video retrieval.
IEEE Transactions on Multimedia 9 (2007) 1193–1201

[15] fu Chang, S., Chen, W., Meng, H.J., Sundaram, H.,
Zhong, D.: Videoq: An automated content based
video search system using visual cues. In: Proceedings
of ACM Multimedia. (1997) 313–324

[16] Hu, R., Barnard, M., Collomosse, J.: Gradient field
descriptor for sketch based retrieval and localization.
In: ICIP. (2010) 1025–1028

[17] Hu, R., Collomosse, J.P.: Motion-sketch based video
retrieval using a trellis levenshtein distance. In: ICPR.
(2010) 121–124

[18] Hu, R., James, S., Collomosse, J.P.: Annotated
free-hand sketches for video retrieval using object
semantics and motion. In: MMM. (2012) 473–484

[19] Rother, C., Kolmogorov, V., Blake, A.: ”grabcut”:
interactive foreground extraction using iterated graph
cuts. In: ACM SIGGRAPH. (2004) 309–314

[20] Li, Y., Sun, J., Shum, H.Y.: Video object cut and
paste. ACM Transactions on Graphics 24 (2005)
595–600

[21] Wang, T., Collomosse, J.P.: Probabilistic motion
diffusion of labeling priors for coherent video
segmentation. IEEE Transactions on Multimedia 14
(2012) 389–400

[22] Kohli, P., Ladicky, L., Torr, P.H.S.: Robust higher
order potentials for enforcing label consistency.
International Journal of Computer Vision 82 (2009)
302–324

[23] Grundmann, M., Kwatra, V., Han, M., Essa, I.:
Efficient hierarchical graph-based video segmentation.
In: CVPR. (2010) 2141–2148

[24] Collomosse, J.P., McNeill, G., Watts, L.A.: Free-hand
sketch grouping for video retrieval. In: ICPR. (2008)
1–4

[25] Csurka, G., Perronnin, F.: An efficient approach to
semantic segmentation. International Journal of
Computer Vision 95 (2011) 198–212

[26] Hu, R., Larlus, D., Csurka, G.: On the use of regions
for semantic image segmentation. In: Indian
Conference on Vision Graphics and Image Processing.
(2012)

[27] Ochs, P., Brox, T.: Higher order motion models and
spectral clustering. In: CVPR. (2012) 614–621

[28] Shotton, J., Johnson, M., Cipolla, R.: Semantic
texton forests for image categorization and
segmentation. In: CVPR. (2008) 1–8

[29] Yang, B., Nevatia, R.: An online learned crf model for
multi-target tracking. In: CVPR. (2012) 2034–2041

[30] Boykov, Y., Kolmogorov, V.: An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision. IEEE Transaction on Pattern
Analysis and Machine Intelligence 26 (2004)
1124–1137

[31] Alahari, K., Kohli, P., Torr, P.H.S.: Reduce, reuse &
recycle: Efficiently solving multi-label mrfs. In:
CVPR. (2008)


