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a b s t r a c t 

The application of Machine Learning (ML) to Cultural Heritage (CH) has evolved since basic statistical ap- 

proaches such as Linear Regression to complex Deep Learning models. The question remains how much 

of this actively improves on the underlying algorithm versus using it within a ‘black box’ setting. We sur- 

vey across ML and CH literature to identify the theoretical changes which contribute to the algorithm and 

in turn them suitable for CH applications. Alternatively, and most commonly, when there are no changes, 

we review the CH applications, features and pre/post-processing which make the algorithm suitable for 

its use. We analyse the dominant divides within ML, Supervised, Semi-supervised and Unsupervised, and 

reflect on a variety of algorithms that have been extensively used. From such an analysis, we give a crit- 

ical look at the use of ML in CH and consider why CH has only limited adoption of ML. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

The use of Machine Learning (ML) techniques within Cultural

Heritage (CH) are still limited, since most of CH literature shows

a tendency to rely on statistical toolboxes, which are commonly

applied as a ’black-box’ on small datasets that are not generally

publicly available. Despite this tendency of these methods to be

applied within their ‘black-box’ configuration, we look to survey

and reflect on the reciprocal effects of ML on CH and of CH on ML.

In particular, we highlight the works where there is a contribution

in improving the underlying ML method. Our approach is to review

articles published across CH and ML over the past five years to

understand where research activities have been performed from a

ML perspective. We apply this temporal constraint based on the

purpose of assessing the diffusion of the last ML techniques, such

as Deep Neural Networks, in CH. 

In this survey, we aim at depicting the interplay between ML

and CH addressing both CH practitioners interested in using ML

methods and ML practitioners with aspirations in CH applica-

tions. To this end, we address CH practitioners by systematically
∗ Corresponding author. 
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escribing the most used ML techniques in CH and reflecting to the

ssue regarding the lack of suitable training datasets, while we ad-

ress ML researches by presenting the CH datasets publicly avail-

ble and describing the possible modifications of the underlying

L methods. As usual in ML surveys, we break the field of ML

nto three distinctions – Supervised, Semi-supervised and Unsuper-

ised. 

As state-of-the-art techniques take time to become popular in

ther fields such as CH, it is intuitive that more classical classi-

cation and regression techniques, such as Linear and Logistic re-

ression , have a distinct and useful application within CH. While

hese can be applied in conservation effort s, such as historical

uilding integrity prediction [31] , there are numerous others ex-

mples of supervised approaches which will be considered across

ection 3 . Interestingly in the application of Support Vector Ma-

hines (SVM) [19] refined the hyper-parameter estimation to sup-

ort multiple-instance learning for recognising iconographic ele-

ents in artworks. With increasing effort s f or digitisation of CH

ssets, the progression to Deep Learning models is natural, where

odern data trained models are fine-tuned to CH data. This pro-

ess is generally placed under the umbrella of transfer learning

covered later); such approaches are simple to apply when small

mounts of labelled data is available, a common issue in CH and

here it is frequently applied for digital artwork classification [36] .

https://doi.org/10.1016/j.patrec.2020.02.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.02.017&domain=pdf
mailto:marco.fiorucci@iit.it
https://doi.org/10.1016/j.patrec.2020.02.017
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Building on transfer learning is a useful ability to learn a map-

ing from real world imagery, in which we have many annotated

xamples, to artwork datasets where there are few available. Such

pproaches has received increasing attention as it can naturally be

ormulated within a deep learning context. Using high accuracy su-

ervised Convolutional Neural Networks is desirable if the embed-

ed knowledge can be transferred, especially where the transfer

unction can be learnt in an unsupervised manner. While these

echniques are applicable to many problems, they are predomi-

antly seen on digital artwork as it is mainly a style difference to

e overcome. 

Alternatively, the use of unsupervised techniques generally ap-

lies to clustering of data, with K-Means being regularly employed

ithin CH [43,51] and go beyond artwork with the clustering of

hemical signatures for iron-making complexes [15] . Although in

ur analysis dimensionality reduction is extensively used within

H, it is used in the original formulation, with Principal Compo-

ent Analysis (PCA) being a common technique. Clustering can be

een to be highly important in CH facilitating the association of

omplex representations of assets. 

In each of the following sections we draw a generalised formu-

ation based on familiar ML publications, Bishop [6] , Hastie et al.

21] , Shalev-Shwartz and Ben-David [38] or referenced literature,

hich we reflect or extend on throughout the section. In addition,

e draw from a variety of publication sources to construct this sur-

ey (details in supplementary material), where we select the most

elevant from an ML perspective. Although many of the applica-

ions of CH are applied in Computer Vision setting, due to the ease

f data acquisition, we try to include examples from other fields

ncluding chemical analysis which also exploits ML techniques for

H problems. 

. Datasets 

The presence of different social and technical barriers to the

ross-fertilisation between ML and CH become apparent after re-

iewing the most recent literature regarding the interplay between

he two disciplines. The major part of these barriers have been

enerated by some issues that are strongly related to the qual-

ty and to the access of datasets collected by CH researchers (see

ection 6 ). These datasets are often small and are not publicly

vailable. However, recently, CH institutions have worked hard to

ake available large digital collections of artworks. 

One of the largest museic-centric dataset is OmniArt 1 

44] which is composed of digitised artworks aggregated from

 multiple collection around the world. The authors provided

aseline scores on multiple tasks such as author, period, gender

nd style prediction. Another large collection of digitised artworks

s Wikiart paintings 2 [22] which is composed of paintings from

119 artists ranging from fifteen century to contemporary painters.

vailable metadata allow to classify a painting based on its style,

ender and author. A dataset of contemporary artworks is BAM 

3 

53] which was built by collecting artworks from a portfolio

ebsite for professional and commercial artists ( Behance 4 ). Other

ollections of digital artworks are IconArt [19] contained paint-

ng images ranging from the 11th to the 20th century, PrintArt

7] composed of artwork prints collected from the Artstor dig-

tal image library 5 and Rijksmuseum the Rijksmuseum dataset

28] contained photographic reproductions of the artworks exhib-
1 http://www.vistory-omniart.com/ . 
2 http://www.wikiart.org/ . 
3 https://bam-dataset.org/ . 
4 https://www.behance.net/ . 
5 https://www.artstor.org/ . 

i  

o  

c

ted in photographic reproductions of the artworks exhibited in

his museum. 

Additional information, like the size of the dataset and the pres-

nce of metadata, can be found in Table 1 , which is also reported

nformation on two of the major digital platforms for CH, namely

uropeana 6 and Web Gallery of Art 7 . 

Finally, over recent years, archaeologists started in earnest to

ntroduce new benchmark datasets with the aim of enabling cross-

tudy comparisons and cross-fertilisation between ML and CH. This

merging trend is evident in archaeological remote sensing, where

ris Kramer introduced a labelled benchmark dataset, called Arran 

8 ,

or the detection of sites on LiDAR data. The authors provided ML

aselines for the task of image segmentation and archaeological

ite classification by training a RetinaNet [24] with the aim of at-

racting the interest of MLs researchers in developing new methods

o tackle challenges in archaeology. 

. Supervised Learning 

Supervised learning (SL) aims to learn a function f from an in-

ut space X to an output space Y given a finite sequence of input-

utput pairs LS = { (x i , y i ) | i = 1 , 2 . . . , N} , called the training set,

rawn independently from a distribution p on X × Y . The function

f : X → Y is learned by minimising the expectation over p ( x, y ) of

 loss function � : Y × Y → R , which penalises errors in prediction

ade by f . SL algorithms can be divided into two main groups,

amely regression and classification, based on the nature of the

utput space. Regression methods aim to learn a real-valued func-

ion f : X → Y, Y ⊆ R ; while classification algorithms aim to as-

ign at each input element x i ∈ X a label y j ∈ Y, where Y is a dis-

rete set. In the next subsections, the main regression and classifi-

ation algorithms largely used in CH research will be presented. 

.1. Linear & Logistic Regression 

The two most popular regression methods used in CH are Lin-

ar Regression (LR) and Logistic Regression (LgR). They mainly dif-

er in the range of values assumed by y ∈ Y: in LR, y can be any

alue in R , while in LgR, y ∈ [0, 1], where y represents the proba-

ility that x ∈ X belongs to one of two possible categories. Hence,

lthough it contains the word regression in the name, LgR is used

ainly as a binary classification method. 

Recent contributions of LR and LgR in CH are the detection of

he amount and the kind of stone tool production [41] ; the de-

elopment of a model for describing the main historical factors

hat may have influenced the use of different pottery types over

ime [35] ; and the prediction of archaeological site locations rely-

ng only on partial knowledge of ancient settlements [50] . An in-

eresting statistical technique for predicting the functional service

ife of heritage buildings for maintenance purposes was introduced

y Prieto et al. [31] . They considered 100 parish churches taking

nto account 17 factors influencing their functionality and service

ife, such as geological location, roof design, load state changes,

ainfall and temperature. First, they designed a fuzzy model, based

n the Functional Building Service Life (FBSL) index [30] , using a

ondition survey quantified and validated by a group of experts in

he maintenance of heritage buildings. The main drawbacks of this

odel are its complexity, since it encompasses all the 17 variables,

nd the requirement of expert knowledge. To overcome these lim-

tations, two LRs models are proposed, where all the hypothesis

f the regression are analysed to eliminate the effects of multi-

ollinearity. Thus, inter-related pseudo-independent variables are 
6 https://www.europeana.eu/ . 
7 https://www.wga.hu/ . 
8 https://github.com/ickramer/Arran . 

http://www.vistory-omniart.com/
http://www.wikiart.org/
https://bam-dataset.org/
https://www.behance.net/
https://www.artstor.org/
https://www.europeana.eu/
https://www.wga.hu/
https://github.com/ickramer/Arran
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Table 1 

Cultural heritage datasets publicly available. 

Dataset Name Type # of 

Objects 

Type of 

Object Metadata Relationships 

Description Evaluation 

Configura- 

tion 

Classification 

Task 

Retrieval 

Task 

OmniArt [44] Standard 2 mil Images 
√ 

✗ ✗ 
√ √ 

✗ 

WikiArtPaintings [22] Standard 85,000 Images 
√ 

✗ ✗ 
√ √ 

✗ 

BAM [53] Standard 2.5 mil Images ✗ ✗ ✗ ✗ ✗ 
√ 

IconArt [19] Standard 5,955 Images 
√ 

✗ ✗ ✗ 
√ 

✗ 

PrintArt [7] Standard 988 Images 
√ 

✗ ✗ 
√ √ √ 

Rijksmuseum [28] Standard 3,593 Images 
√ 

✗ ✗ ✗ 
√ 

✗ 

Europeana Graph 50 mil Images / 

3D 

√ √ √ 

✗ ✗ ✗ 

Web Gallery of Art Database 47,300 Images 
√ 

✗ ✗ ✗ ✗ ✗ 

Arran Standard 2000 Images 
√ 

✗ 
√ √ √ 

✗ 
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pruned jeopardising the multiple regression analysis. This leads to

a first LR model, considering FBSL index as dependent variable and

encompassing 11 input variables, which exhibited a correlation of

92.3% between the predicted and the observed values. Then, they

proposed a simplified LR model encompassing only 6 indepen-

dent variables, with a loss in accuracy lower than 5%. This anal-

ysis showed that the most relevant variable for the assessment of

the functional service life of considered church is the roof design.

This is in accordance with historical data related to restoration in-

terventions. 

The reviewed literature shows that the study of archaeological

artefacts, such as stone tools and potteries, was often conducted

using regression models, provided by statistical software, on small

datasets that are not generally publicly available. 

3.2. Decision Trees and Random Forests 

A decision tree is a tree structure used for splitting a com-

plex problem by recursively partitioning X into into k disjoint sets

A 1 , A 2 , . . . , A k based on binary decision rules corresponding to cer-

tain cut-off values in the features. The predicted value of the class

variable y ∈ Y is j if x ∈ X belongs to A j . The main limitation of de-

cision trees is that they are prone to overfitting by creating com-

plex models that do not generalise well. This issue can be ad-

dressed by building an ensemble of different de-correlated decision

trees, called a random forest. Such model relies on the idea of aver-

aging many simple noisy unbiased trees, which grow in randomly

selected subspaces of data, to reduce the variance of the model.

This strategy might reduce the overfitting that can occur when a

single decision tree is used. However, decision trees are often used

in CH to classify artefact or archaeological sites since they are easy

to interpret. 

One of the recent applications of decision trees on CH is the

study of potential of phytolith and geochemical data for under-

standing the use of spaces at ephemeral sites was proposed by

Vos et al. [49] . They collected data by means of X-ray fluorescence

(XRF) instrument used on soil samples from six Bedouin campsites

in Jordan. A C 4.5 algorithm [32] was used to train one decision

tree on the geochemical readings, one on phytolith data and one

on a dataset contained both geochemical and phytolith data. The

experimental results showed that the use of geochemical method-

ology is more efficacy than phytolith analysis for distinguishing

between activity areas in ephemeral sites. A relevant application

of decision trees is the classification of potteries deriving from

domestic and tomb contexts introduced by Charalambous et al.

[9] . They compared the performance obtained by a C 4.5 decision

tree, a k-nearest neighbours (k-NN) classifier and a Learning

Vector Quantisation (LQV) neural network, which were trained

on compositional chemical data obtained from ED-XRF analysis of

ceramics in the form of pressed-powder pellets from Cyprus. The
ask was particular challenging due to the small size of the dataset

177 observation) compared to the relatively large number of

lasses (36 fabric groups). Decision trees and k-NN outperformed

QV neural networks, providing information on the relationships

mong different fabrication groups. 

Random forests (RFs) generalise better than decision trees, but

hey are less interpretable. Recent contributions of RFs in CH are

he archaeological sites prospection using remote sensing [46] and

he classification of ceramic artefacts based on their chemical com-

osition [27] . A RF model for the segmentation of petroglyphs from

D digitisation of rock surfaces was proposed by Zeppelzauer et al.

58] . They used a RF classifier to determine if a pixel of a depth

ap belongs to either the foreground (pecked rock surface) or the

ackground (natural rock surface). They trained each tree indepen-

ently by maximising the information gain by means of a ran-

omised grid search. The model was trained on a randomly sam-

le of 4,0 0 0 patches per class from each scan in the training set.

heir experimental results showed that their method yields accu-

ate segmentation over a large dataset of 3D surface outperforming

D colour-based segmentation. 

Another applications of RFs was introduced by Arráiz et al.

2] for classifying starch granules extracted from different edi-

le plant species. They trained a RF classifier on feature vectors

mbedding descriptive geometrical parameters of starch granules.

hey analysed 50 0 0 starch granules obtaining an average correct

dentification rates of 53% for species. Even if the average accu-

acy is not high, the proposed method is more powerful than the

uman eye, for which the average success rate is just of 25% for

pecies level identifications. 

As for regression models, decision trees and random forests

ere generally applied on small archaeological datasets that are

ot publicly available. This lack of public training data discourages

L researchers to work in the CH field. 

.3. Support Vector Machines 

Support Vector Machines (SVMs) are supervised learning meth-

ds for binary classification or regression. The classification is per-

ormed by finding the hyperplane w 

T x − b = 0 that maximises the

eometric margin between the two classes, with labels −1 and

, where x is an input feature vector. The classifier parameters w

nd b are learned by solving the following quadratic optimisation

roblem: min w,b 1 / 2 || w || 2 + C 
∑ m 

i =1 ξi , such that y (i ) (w 

T x (i ) + b) ≥
 , ξ i ≥ 0, i = 1 , 2 , . . . , m, where the pair ( x ( i ) , y ( i ) ) is an element of

he training set and C is a regularisation parameter that controls

he trade-off between maximising the margin and minimising the

raining error. 

Recent applications of SVMs on CH are the automatic document

ayout analysis on medieval manuscripts [56] and the authenti-

ation of artworks based on the combination of hyper-spectral
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9 https://environment.data.gov.uk/ . 
maging and signal processing techniques to identify and classify

igments [29] . A SVM classifier was used by Chen et al. [11] for

he chronological classification of ancient paintings. In this work,

 painting style was described by means of a uniform handcrafted

eature representing the multiview appearance and colour at-

ributes of objects. The SVM took as input a feature histogram

onstructed for each image in the form of bag-of-visual words. The

roposed method was compared with state-of-the-art methods,

ike DeepSift, obtaining a clearly better performance. 

Even if also SVMs were in general applied on not publicly avail-

ble datasets, the reviewed literature shows one of the few works

here the authors had proposed a modification of the underlying

L methods. In particular, a weakly supervised multiple-instance

earning (MIL) method for detecting and recognising iconographic

lements on digital artworks was introduced by Gonthier et al.

19] . Their technique was able to learn new classes on-the-fly

voiding to manually label the objects belonging to the new

lasses. They considered to have N images at hand, where each

mage contained K bounding boxes indexed by k , which were

xtracted by means of a Faster R-CNN [34] in a transfer learn-

ng setting. The number of positive examples in the training set

as n 1 , while n −1 was denoted the number of negative exam-

les. The authors assumed that, for a given category, if image i

as a positive label y i = 1 , then there was at least one of the

 regions in image i that contained an occurrence of the cate-

ory. To solve this multiple-instance classification problem, they

ntroduced a generalisation of SVMs looking for an hyperplane of

he following functional min w,b L (w, b) , with L = φ(w, b) + C|| w || 2 
nd φ(w, b) = 

∑ N 
i =1 −y i /n y i tanh { max k ∈{ 1 , ... ,K} (s i,k + ε)(w 

T x i,k + b) } ,
here x i,k is the semantic feature vector associated to the k th box

n the i th image and s i,k is a class agnostic objectness score related

o the box k , which provides a prioritisation between boxes. This

ormulation can be trained by simple gradient descent, avoiding

n this way costly multiple SVM optimisation and heuristic itera-

ive procedures [1] . The authors introduced a new datasets, called

conArt, which is composed of 5955 painting images from Wiki-

ommons, ranging from the 11th to the 20th century, which are

artially annotated. The experimental results showed that the pro-

osed method is promising for developing tools helping art histo-

ians, since it avoids tedious annotations of large datasets. 

.4. Supervised Deep Neural Networks 

In the last years, Deep Neural Networks (DNNs) have success-

ully been used for several computer vision and natural language

rocessing applications. This is due to the ability of DNNs to

earn high-level features from data replacing the need for hand-

rafting features, which requires a great deal of human time and

ffort. Since f or CH there is often a lack of large labelled datasets,

esearchers tackle the feature learning task following a transfer

earning approach, where the last layers of a pre-trained network

re fine-tuned on the target CH dataset. However, only recently,

NNs have been attracting the interest of CH scholars, who have

egun applying them to digital work analysis and archaeological

emote sensing, as technologies to efficiently collect large datasets

re now readily available. 

Recent contributions to digital work analysis are the study of

imilarity metric learning methods for making aesthetic-related

emantic-level judgements, such as predicting the painting’s style,

enre, and artist [37] ; the detection of fake artworks by stroke

nalysis [17] and the artistic style transfer using adversarial net-

orks to regularise the generation of stylised images [55] . A study

f the applicability of Convolutional Neural Networks (CNNs) for

ttributing the authorship to different artworks, recognising the

aterial which has been used by the artist in their creations, and

lassifying artworks into different artistic categories was conducted
y Sabatelli et al. [36] . They followed two transfer learning ap-

roaches: an off-the-shelf classification where only a final softmax

lassifier was trained on the target training set, while the pre-

rained CNN weights did not change; and a fine-tuning approach

here the CNN was trained together with the final softmax clas-

ifier on the target domain by optimising the last layers of the

re-trained neural network. A comparative experimental analysis

as conducted using four CNNs pre-trained on ImageNet: VGG19

43] , Inception-V3 [45] , Xception [12] and ResNet50 [54] . The ex-

erimental evaluations was performed on two dataset of paintings:

he Rijksmuseum Challenge 2014 dataset [28] and a much smaller

ataset obtaining by random sampling the DAMS (Digital Asset

anagement System) repository, which aggregates several digital

ollections come from the city of Antwerpen. The experimental re-

ults showed that the fine-tuning approach outperformed the off-

he-shelf one, since fine-tuned CNNs provided novel selective at-

ention mechanisms over the images. However, the off-the-shelf

pproach was effective in recognising materials and in classifying

rtworks, while it failed in attributing the authorship. 

Recent applications of DNNs to archaeological remote sensing

re the classification of sub-surface sites using R-CNNs on LiDAR

ata [48] and the detection of buried sites on Arc GIS data [39] .

oth contributions followed a transfer learning approach by fine-

uning on LiDAR data a pre-trained CNN on ImageNet [14] . How-

ver, pre-training DNNs on RGB ImageNet images to identify ob-

ects in one channel depth LiDAR images may lead to performance

egradation. Moreover, objects in ImageNet can appear at different

cales but in not many different rotations, while for aerial data the

cale variations are relatively small, but objects can have several

ifferent rotations. To overcome these limitations, Gallwey et al.

18] proposed a method to detect industrial heritage sites by em-

loying a pre-trained CNN, called DeepMoon [42] , on single chan-

el Digital Elevation Model (DEM) images of the lunar surface [4] .

eepMoon was designed to detect lunar craters relying on eleva-

ion changes in single channel DEM images. The circular shape of

unar craters can be similar to the ones of several archaeological

ites, such as mounds and round houses, and this can lead to an

mprovement of the classification accuracy. The authors fine-tuned

he DeepMoon network on the Dartmoor dataset contained DEM

mages of Dartmoor National Park obtained from the Environment

gency 9 for detecting historic mining pits. The experimental re-

ults showed that the proposed approach was able of differentiat-

ng between natural depressions and man-made ones with a false

ositive rate of less than 20%. Hence, this approach can be em-

loyed as pre-prospecting tool for helping archaeologists to vastly

educe the area to be manually analysed. 

In contrast with the previous supervised techniques, DNNs

ere generally used on publicly available CH datasets. However,

s pointed out in the supplementary material, DNNs are still lit-

le used by CH researchers, who seems to prefer more traditional

upervised methods, such as regression models. 

. Semi-supervised Learning 

Semi-Supervised Learning (SSL) aims to leverage both labelled

nd unlabelled data to improve learning performance. The most

art of SSL algorithms learn by jointly optimising a supervised

oss over labelled data and an unsupervised loss over both labelled

nd unlabelled data. Among these methods, domain adaptation is

he most widely used in CH. Its goal is to transfer the knowledge

earned from a source domain to a target domain, for which labels

re usually not available, by finding a mapping between the data

istribution of these two domains. 

https://environment.data.gov.uk/
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4.1. Semi-supervised Deep Neural Networks 

In recent years, semi-supervised DNNs attracted increasing in-

terest in the ML community. This arises from the idea of exploiting

the powerful representation-learning ability of DNNs using only

a small amount of labelled examples, which are often expensive

and difficult to collect. Following this idea, semi-supervised DNNs

have proven to be very effective tools to tackle the domain adap-

tation problem [52] . This is of particular interest for the CH com-

munity, since domain adaptation has found applications in visual

work analysis. Recent contributions in this direction are the auto-

matic annotation of visual contents in ancient manuscripts [3] , and

the prediction of painting style [53] . 

A semi-supervised visual-semantic model for cross-modal re-

trieval of images and captions, in which the pairing between

images and captions was not known at training time, was

proposed by Carraggi et al. [8] . In their approach, two auto-

encoders were trained, respectively for visual and textual data

of the source domain, producing an intermediate representation

used to create a common embedding space, where both modal-

ities can be projected and compared. To learn such embedding,

they employed the following hinge triplet ranking loss composed

of two terms: L (i, c) = 

∑ 

c̄ [ α − s (i, c) + s (i, ̄c )] + + 

∑ 

ī 
[ α − s ( ̄i , c) +

s (i, c] + , where α is the margin, [ x ] + = max (0 , x ) , s ( x, y ) is the co-

sine similarity between x and y , c̄ and ī are, respectively, the i th

negative caption and the i th negative image. A semi-supervised

visual-semantic alignment was then applied to learn relationship

between the visual and textual features in the target unsupervised

dataset. Their method was evaluated using Flickr30K [57] and Mi-

crosoft Coco [25] as source datasets, while for the target domain,

they introduced a new CH dataset, called EsteArtworks, which con-

tains 553 artworks and 1278 textual annotations related to the art-

work visual contents. The experimental results showed that the

distribution alignment gives a significance contribution to the fi-

nal performance if the visual and textual distributions of target do-

main are not similar to those of the source domain. 

A semi-supervised method to retrieve artworks present-

ing near duplicate visual elements was introduced by Shen

et al. [40] . A two-step approach for learning deep features

by leveraging spatial consistency across matches was proposed.

First, hard-positive matching examples were found using spa-

tial consistency as supervisory signal, and then the positive

matched features were updated using a single gradient step

of the following triplet loss: L (P 1 , P 2 , { N i } ) = − min (λ, s (P 1 , P 2 )) +
1 /N neg 

∑ N neg 

i =1 
max (s (P 1 , N i ) , 1 − λ) , where ( P 1 , P 2 ) is a positive fea-

ture pair, N i = { 1 , . . . , N N n eg } are negative examples, s is the cosine

similarity and λ is a hyperparameter. Experimental results showed

the effectiveness of the proposed method in retrieving near dupli-

cates elements across different artworks. 

Even if, as pointed out in the supplementary material, there few

articles where semi-supervised methods are applied to CH, they

represent some of the few works where the authors had proposed

a modification of the underlying ML methods. 

5. Unsupervised Learning 

Unsupervised learning aims to find the structure and the regu-

larity of an unlabelled dataset for the purpose of extracting useful

representations. Among the unsupervised learning methods, clus-

tering algorithms are, as pointed out in the supplementary mate-

rials, the most widely used in CH. Clustering methods assign data

points into groups, called clusters, so that the pairwise similari-

ties between points assigned to the same cluster tend to be higher

than those in different clusters. It is worth noting that dimension-

ality reduction is heavily used within CH. However, it is mainly
sed only as a pre-processing step or as a visualisation tool for

epresenting high-dimensional data in 2-D plots. 

.1. Clustering 

Clustering algorithms can be divided into two main groups,

amely, partition based, where the points can be grouped in dis-

oint or overlapping clusters, and hierarchical clustering where a

ested series of partitions are produced given a criterion for merg-

ng or splitting clusters based on a similarity measure. Cluster-

ng algorithms were previously reported for several applications

n CH, among which constructing a codebook of visual words to

hronologically classify ancient paintings [11] ; recognising objects

n artistic modalities by unsupervised style adaptation [47] ; group-

ng paintings by artistic style using unsupervised feature learning

20] ; determining maximum firing temperatures of ancient ceram-

cs [23] ; grouping 3D morphometric data of pounding stones to in-

er the intensity of humane use [5] ; studying osseous projectiles

sing geometric morphometrics [16] ; and for chemical characteris-

ng of Portguese 18th century glasswares [26] . 

A method for recognising the modeling style of Dazu Bod-

isattva head images was introduced by Wang et al. [51] . They

roposed a two-step approach where first a pre-trained VGGNet

43] was used to extract prominent features of resized head im-

ges, and then k-means was applied to cluster the extracted fea-

ures in order to verify if statues with similar style came from

he same cave or region. The pairwise similarity between pair of

eatures was computed using cosine similarity to find the 5 most

imilar images to each input image, and k is set to be 2 to 10.

he experiments were conducted on 114 digital images, in which

 caves are on the same subjects, while others 3 are on different

ubjects. The experimental results showed that statues in the same

ave have a similar modelling style, and it also similar for statues

n the same subject even if they came from different regions. 

An approach for comparing the chemical signature of iron arte-

acts to infer the origin of the metal supplied to the building yard

f the Metz city was proposed by Disser et al. [15] . They intro-

uced a multi-step approach, where first PCA was used to de-

ermine which element is more characteristic of a given chem-

cal domain, since the chemical signatures of iron-making com-

lexes were geometrically represented by multidimensional clus-

ers. In the second step, the minimum-variance hierarchical clus-

ering, which is based on the minimisation of the total within vari-

nce, was used to group iron-making complexes that are coherent

n term of the chemical composition. The proposed method was

valuated on a dataset of observations of iron ores composition of

etz’s yard. The experimental results showed that their method

as able to detect slight modifications of the level of iron ores and

lags, beating the state-of-the-art in comparing artefact chemical

ignatures. 

As pointed out in the supplementary material, clustering is one

f the most used ML technique within the CH field. However, as

or regression models, decision trees and random forests, cluster-

ng algorithms were applied on datasets that are not generally

ublicly available. As mentioned in Section 2 , this lack of publicly

vailable datasets is one of the major barriers that prevents the

ross-fertilisation between ML and CH. In the next section, a criti-

al analysis of the main issues that limit the interplay between the

wo disciplines will be presented. 

. Critical reflections on the use of ML in CH 

It is evident among the reviewed literature that while the im-

act of ML on CH has had limited effect, the reciprocal effect is

lmost non-existent with only a few articles ( < 5) having con-

ributed back to the underlying method. While this is an unsurpris-
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ng outcome, it can be seen that ML has had greater effect in simi-

ar fields, such as in Medicine where novel deep neural network ar-

hitectures have been designed for the diagnosis and prognosis of

iseases, like cancer [10] , leading to a paradigm shift in the med-

cal research [33] . We attribute the limited use of ML techniques

ithin CH to issues related to the access and quality of data. 

.1. Access to Data 

We refer to access to data in regards to digital replicas of phys-

cal objects. In terms of paintings, museums have worked hard to

ake them available in the form of large digital collections (see

ection 2 ). This has further been made more available by aggre-

ations such as Europeana and WikiArts. In addition, in general,

hese embrace Creative Commons (frequently CCO) allowing per-

onal and academic use. However, as capture of 2D imagery is far

impler than 3D models, and these repositories are mainly limited

o 2D imagery. ML techniques can be used to provide transcrip-

ion and attribute prediction (e.g. style and genre), which although

seful, isn’t going to create a high impact based on few fields. In

ontrast, the use of full 3D models provides new challenges to ML

echniques which requires bespoke descriptors, matching and clas-

ification to have use. This facilitates archaeological and conser-

ation research allowing for temporal reasoning and material un-

erstanding while also pushing real world challenges into the ML

ommunity. 

.2. Quality of Data 

In contrast to Medicine, CH has a wealth of information that

n general doesn’t hit upon privacy issues, instead only the issue

f rights management needs to be addressed. Although 3D mod-

ls on their own are not enough to provide significantly more ap-

lications of ML, they open up new opportunities for Computer

ision and Machine Learning researchers and bring into the fold

esearchers from other fields like structural engineers where a

D model can be used to provide real-world conservation impact.

o this end, greater attributes need to be provided allowing the

emoval of style and period, and the generation of representa-

ions that are possible to compare at a material level. This can be

chieved by extending out current datasets which often contain a

umber of meta-data fields less than 10 and by providing signif-

cant relationships between objects and also with data from 3rd

arty sources, like texts and chemical analysis. 

.3. Additional considerations 

ML is currently going through an intense internal reflection on

he datasets used. A key visual dataset ImageNet [14] redacted

0 0,0 0 0 items [13] after bias was expensively identified. The infor-

ation surrounding CH has bias on even the least offensive items,

owever the understanding of human history is often regarded as

nderstanding different perspectives. In contrast to News or other

urrent affairs datasets, hindsight is possible, allowing the reflec-

ion of multiple perspectives. This can be useful in automatically

earning the bias or different perspectives of the historical event. If

H data was to pioneer such a unbiased ML it could have profound

mpacts on other fields. 

Confounding all the aforementioned challenges comes the trust

f technology of GLAMs which act as the gate keepers to the data.

o date current use of ML is largely bespoke and in general doesn’t

dvance tasks which an expert could already execute. However,

hese challenges go beyond what an expert or team of experts can

chieve. Demonstrating how ML can reinvigorate a field, if they re-

ease their data. 
. Conclusions and Future Insights 

The widespread adoption of Machine Learning algorithms

ithin Cultural Heritage is clearly evident throughout the litera-

ure. However, in most cases it has been applied within a ‘black

ox’ setting where there are only a few examples of changes to

he underlying formulation of the algorithm. Even where they are

sed, few approaches take advantage of more advanced (or recent)

L algorithms with clustering, or simple classification (SVM, Ran-

om Forests) being preferred. Most contributions are in the devel-

pment of visual or textual features which form the input to the

odel as a pre-processing step. However, this leaves a large op-

ortunity for jointly optimising the features and classification or

egression methods. This has started with the use of deep archi-

ectures where such combined optimisation can more easily be de-

ned within a loss function. 

The ability to access data in sufficient quantities limits the ap-

lications of ML methods in CH. Therefore, it is logical that articles

elating to adaption to ML algorithms are predominantly on dig-

tal artwork analysis as acquisition and data are readily available.

owever, if you look at the larger corpus of papers that use ML

ethods, this statement no longer holds, but these methods treat

L as ‘black box’. The more active areas in ML for CH relate to ar-

haeological artefacts (including pottery) as well as their chemical

nalysis. 

The trend to increase the joint optimisation of features and

lassification (or regression) algorithm clearly has had a profound

ffect on not only the accuracy, but usefulness of algorithms. It is

herefore foreseeable that more CH applications can take advantage

f the developments in deep learning. Especially as improvements

n spatial reasoning will allow the contextual understanding of the

omposition of iconography or other such forms which is plentiful

ithin CH. 
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